TopoDimRed: a novel dimension reduction technique for topological data analysis

Sihao Wang

Southern Methodist University, Dallas, United States

Bingjie Chen

University of York, York, United Kingdom

DOI: https://doi.org/10.47813/2782-5280-2023-2-2-0201-0213

Keywords: topological data analysis, dimension reduction, TopoDimRed, high-dimensional data, topological features, visualization, preserving topology, biological networks


Abstract

Topological data analysis (TDA) has emerged as a powerful approach for analyzing complex datasets, capturing the underlying shape and structure inherent in the data. However, TDA often encounters challenges when dealing with high-dimensional data due to the curse of dimensionality. To address this issue, we propose a novel dimension reduction technique called TopoDimRed that integrates topological analysis with advanced dimension reduction algorithms. TopoDimRed aims to reduce the dimensionality of topological data while preserving important topological features, enabling efficient visualization and analysis. In this paper, we present the methodology of TopoDimRed, highlighting its ability to capture and preserve relevant topological structures during the dimension reduction process. We conduct extensive experimental evaluations on diverse datasets from different domains, comparing TopoDimRed with traditional dimension reduction techniques. The results demonstrate that TopoDimRed outperforms or achieves comparable performance in terms of preserving topological features, visualization quality, and computational efficiency. Furthermore, we showcase the application of TopoDimRed in various domains, including biological networks, social networks, materials science, and neuroscience, illustrating its utility in gaining insights from high-dimensional topological data. We discuss the strengths and limitations of TopoDimRed and propose potential future directions for its development and application. Overall, TopoDimRed offers a valuable tool for researchers and practitioners to explore, visualize, and analyze high-dimensional topological data, facilitating the discovery of hidden structures and meaningful insights in complex datasets.


Author Biographies

Sihao Wang, Southern Methodist University, Dallas, United States

Sihao Wang, Southern Methodist University, Dallas, United States

Bingjie Chen, University of York, York, United Kingdom

Bingjie Chen, University of York, York, United Kingdom


References

Carlsson G. Topology and data. Bulletin of the American Mathematical Society. 2009; 46(2): 255-308. DOI: https://doi.org/10.1090/S0273-0979-09-01249-X

Lum P. Y., Singh G., Lehman A., Ishkanov T., Vejdemo-Johansson M., Alagappan M., ... & Carlsson G. Extracting insights from the shape of complex data using topology. Scientific Reports. 2013; 3: 1236. DOI: https://doi.org/10.1038/srep01236

Lee M., Verleysen M., Francois D. TDA for dimensionality reduction: a review. Neurocomputing. 2019; 325: 81-91.

Van der Maaten L., Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research. 2008; 9(Nov): 2579-2605.

McInnes L., Healy J., Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint. 2020; arXiv:1802: 03426.

Kobak D., Berens P., Froudarakis E. Demystifying dimensionality reduction for single-cell RNA sequencing. Nature Biotechnology. 2020; 38(6): 681-688.

Ghalwash M.F., O'Neill M. The role of topological data analysis in neuroimaging. Frontiers in Neuroinformatics. 2020; 14: 8.

Hofer C., Kwitt R. Deep Topological Autoencoders. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021: 5934-5943.

Wu Y., Gao T., Wang S., Xiong Z. TADO: Time-varying Attention with Dual-Optimizer Model. Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM 2020) IEEE, 2020, Sorrento, Italy; 2020: 1340-1345. doi: 10.1109/ICDM50108.2020.00174 DOI: https://doi.org/10.1109/ICDM50108.2020.00174

Wang S., Chen B. Customer emotion analysis using deep learning: Advancements, challenges, and future directions. Proceedings of the International Conference on Modern Scientific Research; 2023: 21-24.

Edelsbrunner H., Harer J. Computational topology: An introduction. American Mathematical Society; 2010. DOI: https://doi.org/10.1090/mbk/069

Zomorodian A. Topology for computing. Cambridge University Press; 2005. DOI: https://doi.org/10.1017/CBO9780511546945

Most read articles by the same author(s)

Веб-сайт https://www.oajiem.com использует cookie файлы с с целью повышения удобства и эффективности работы Пользователя при работе с сервисами журнала "Modern Innovations, Systems and Technologies" - "Современные инновации, системы и технологии". Продолжая использование сайта, Пользователь дает согласие на использование файлов cookie.